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Abstract

We present a Compositional Proof System for the modal u-calculus and a generalized version
of the parallel composition in CCS [11T'12]. The proof system is designed for inferring global
properties of a system from the local properties of its components. This allows for eflicient
verification of parallel processes by decomposing the task into smaller problems of verifying
the parallel components separately. In particularl'the system can be used to combine model
checking [6] with theorem proving. Since parallel composition causes the largest blow-up in
the number of statesI'this technique proposes an effective solution to the state space explosion
problem. The Proof System is implemented in PVS theorem prover [13]['and the proof of its
soundness was thoroughly checked using PVS logic as a metalanguage. The proof strategy
mechanism of PVS can be used to achieve some degree of automation in a proof search.




1 Introduction.

In this paper we present a Compositional Proof System for the modal p-calculus and CCS
[11T'12]. We use a (slightly modified version of) CCS as a model of concurrency. Many
systems of parallel processes can be expressed as CCS processesI'and then checked against
specifications in the modal p-calculus. Following Stirling [14]T'our proof system consists of
two subsystems. The first one deals with model checking CCS processes without the parallel
composition operatorli.e. it contains proof rules for sequents of the form p - @ (“process p
satisfies a formula ®”)['and is described in detail in [8] for the more general process algebra
of Value Passing CCS and a first order p-calculus. The other subsystemI'which is presented
in this paperl'is devoted to a parallel composition operator and is designed to prove sequents
given by ®||¥ F © (“for any processes p and ¢ satisfying ® and ¥ respectivelyl'the composite
system pl|q satisfies ©”). These two proof systems with an additional inference rule from [14]: '

pF® O|UFO ¢FT (I
plla+©

result in a compositional proof system for CCS (now with parallel composition operator) and
the modal g-calculus. Both subprocesses in each parallel composition operator have associated
formulas specifying their properties. Whenever we are to prove a property of a parallel compo-
sitionI'we first prove that the corresponding properties hold for each componentI'and then infer
in the proof system that the global property of the composition also holds. This compositional
step substantially simplifies the verification problemI'since it avoids building the whole state
space for the parallel composition in finite-state case. This state space grows exponentially in
the number of processes involvedI'thus causing the state explosion problem. ThusT'as a partic-
ular case['we propose a promising method of combining model checking with theorem provingl’
when the verification of the components is accomplished by model checking.

Our verification framework also supports a compositional design in the sense that one can work
out specifications for all the parts of a complex system and prove by our method that if every
component satisfies its specification['then the whole design is correct. After the implementation
it is enough to verify each component separately. MoreoverI'one can change the actual imple-
mentation of some components without having to repeat the verification of the entire system
as soon as the new implementation meets its local requirements.

Our compositional approach differs from many others [2I'3T'5I'7] in that it can handle the
parallel composition operator in a purely compositional way and at the same time remains
general for the full CCS and the full modal g-calculus. In [2I'3I'5] the parallel composition
operator was eliminated basically by encoding one of the subprocesses into the formula. In
the worst case this results in an exponential blow-up in the size of the formulal’and the total
complexity remains the same as for non-compositional model checking [6]. The proof system
of C. Stirling [14] isT'probablyl'the most compositional in a sense that it clearly reduces the
verification problem to the verification of components. In factI'our system has originated from
it. But Stirling considers the Hennessy-Milner logicI'which is too weak to be of much interest
in practice. The proof system of M. Dam [7] is also very close in spirit to oursI'and is complete




for finite-state processes. The latter systemIhoweverTuses the 7 action for all synchronizationsI'
and in the rule  [r] (that corresponds to our ([1])) there have to be as many premises as
there are actions in the model. Thereforel'one can only have a finite set of actionsI'whereas our
system can handle infinite sets of actions as well.

The proof system is implemented in PVS theorem prover [13]. The PVS specification language
is used as a metalanguage to specify and prove the soundness of all the inference rules and
axioms. The proof system is encoded as a set of theoremsI'which can be used as rewrite
rules while a proof is in progress. Since PVS has a built-in model checkerI'both steps of the
verification of finite-state systemsTi.e. model checking the components and deriving the global
propertyl'can be done in a single framework. Alsol'PVS provides a powerful mechanism of
writing proof strategies for automated proof search in our system.

The paper is organized as follows. Section 2 describes our version of CCS. Section 3 introduces
the modal p-calculus [9] (syntax and semantics)['and provides some examples of useful prop-
erties. Section 4 describes the Compositional Proof System and shows an example of a proof
in the proof system. In Section 5 we argue for the soundness of the proof systemlI'in particular
for the soundness of the fixed point rules. In Section 6 we discuss the issue of implementation
in PVS and two examples that we verified. We conclude in Section 7.

2 The Process Algebra.

We use the standard CCS of R. Milner [11T'12]Texcept that we change the parallel composition
operator and the means of synchronization. The importance of this change will become clear
in section 4T'where we need it to simplify the compositional inference rules. Instead of actions
{a, .. }Tco-actions {@,...} and the special action 7['we define input {a?,...}Toutput {a!,...}
and neutral {a,...} actions respectively. We will denote actions of arbitrary type by Greek
letters «,4,.... Now two processes in a parallel composition may synchronize by input and
output actions of the same namel'yielding the corresponding neutral action (one might write
this fact as a? - a! = a!- a? = a). In other wordsI'we distinguish between 7-actions which are
formed by different pairs of actions.

Our parallel composition operator also has a more general form in comparison with CCS: pr||a ¢
can be considered roughly as (p!T)|(¢!A) in the original CCSI'where I' and A are sets of
action symbols. This operator is taken from [2]. ThusI'the abstract grammar of our CCS is the
following:

p == 0|P|y.p|po+pi|por)ap: |pTA|p{E}.

Here 0 is the nil process (called inaction in [11])I'that can not perform any actionI'P is a process
identifierly.p is a prefiz operator['p+q is a non-deterministic choicel' T A and {Z} are restriction
and relabelling. Process identifiers are declared using an identifier declaration of the form

P=p




We will denote the set of all CCS processes by P. The operational semantics of our CCS is
shown on figure 1. As an example['consider these simple processes:

p3g P=pyp p 3y 2 o
Pl)q is declared 'y.p—lp p+q1)p' p+q-1)q'
5 B a? a!
—E29__ (yeA) —E28  (E(y)=9) —p-iﬂ—a—g,iql—7 ( “?gi’ )
pIASglA P{E} 5 ¢{=} prilag=p'rllag V&
Sy —fz» ! pip ¢3¢ atel
—p2p . 9=q9 i !
) (’YEF) 3 ; (6€A) a 1 (a?eA)
prilag—=?'rllag prilag—=rrilag prilag=#'rllag

Figure 1: Operational semantics of the CCS.

P=qablP
Q =b7.cQ
R = (PF”A Q) rA,

where I' = {a,b!}T'A = {b?,c} and A = {a,b,c}.

The process R is combined from the two processes P and QI'that perform asynchronous actions
a and ¢ and are forced to synchronize by b7 and b!I'since b7,b! ¢ A.

3 The Modal u-Calculus.

3.1 Syntax.

Definition 1. The language of the modal p-calculus [9] consists of the following alphabet:
e P,QQ,... € Propl'are propositional constant symbols; in particularl'we assume the exis-
tence of two constants true and false;
o X,Y,... € Varl'are propositional variables;
® v,4,... € Act are action symbols.
We assume that the set of action symbols Act consists of input {a?,...}Toutput {a!,...} and

neutral {a, ...} action symbolsI'in order to ensure compatibility with action symbols of CCS
from the previous section. :

Formulas are defined as follows:

1. PT'where P is a propositional constant;

2. XTwhere X is a propositional variable;




3. & A ®,I'®; V ®,'where ®; and P, are formulas;
4. () ®T'[y] ®I'where v € Act and ® is a formula;
5. uX.®TvX.®T'where @ is a formula.

Note that the absence of negation does not decrease the expressive power of the logicI'since
we can always rewrite formulas in a so-called negation normal formI'where all negations are
applied to atomic formulas only (i.e. to propositional constants and free variables)['and then
define new predicate symbols with the complement interpretation: £(P) = S — L(P) (see the
next subsection for semantics).

For example[some properties of processes P, Q and R from the previous section can be expressed
as:

® =vX.(a) (b)) X

U =vX. (b7)(c) X

O =vX. (a)pY.((c) X V(D)Y)
The formulas ® and ¥ say that the corresponding pairs of actions can repeat infinitely often.
The formula © says that after @ and some finite number of b’s the action ¢ can be executedl’
and this pattern can repeat infinitely often.

Now we describe the formal semantics of the logic.

3.2 Semantics.

A model (Kripke structure) is a tuple
M = (S,—, Act,e, L),

where S is a set of CCS processesI' »C S x Act x S is the transition relation defined on
figure 1 and projected on STe : Var — 25 is an interpretation of variables (environment)l’
and £ : Prop — 2° is an interpretation of propositional constant symbols. In order to be
consistent with the intuitive semantics of CCS and [8]T'we will also assume that the set S is
closed under the rules of figure 1 (i.e. transition closed). Otherwise we may have a situation
wherel'sayl'the process a.0 can not perform the action a in the modell'if 0 ¢ S. ThusT'it does
not satisfy (a) truel'which is counterintuitive. This restriction["howeverl'is not necessary and
all the results in this paper remain valid without it.

The semantic function [.] .e assigns semantic sets to p-calculus formulasI'and is defined induc-
tively as follows: '

[Plee=L(P); [X].e=-e(X);

in particular['[true] e = S, [false],e=0
[2: A @2 e = [Ral e N [®2] e
[2:V @] e = [@1] e U [:] 65




[(7)@],e={s€S|3s €[®]e:s 2 s}
[]®le={s€S|Vs€S:(sDs) = s €[2].e}

[vX.8] e = U{S' € S| &' C [0] e[X = ST}
[4X.8] e = N{S' C 5|5 2 [@] e[X = 5}

Here the updated environment e[X := S'] coincides with e on all variablesI'except maybe XT'
and

e[X =87(X)= 5"
The semantics of the fixed points is well-defined by Tarski’s Fixed-point Theorem [15]['since
all formulas are negation free. ThusI'the semantic function is monotone on the interpretation
of all free variables.

We will write p em ® for p € [®] el'and will often omit the subscript M when this is
unambiguous. We will also write |=a1 ® to mean that p f=p @ holds for every process p € SmT
and |= ® to mean that = ® holds for all modelsT'or is valid or generally true.

3.3 Extensions.

To make formulas shorterl'we will use compound actions (denoted by «,f3,...) in the modal
operators. Compound actions are formed from the ordinary actions from Act using the (finitary
or infinitary) union operator: o U SI'with the semantics of a non-deterministic choice. More
preciselyl'the compound actions may be viewed as sets of actionsI'where

f$=ay LJ ;5
YEo

ThusI'the meaning of the modalities for such compound actions is the following:

= AN (@@= (1?

Y€« YEQ

4 The Compositional Proof System:.

In the sequel we fix a model M = (P, —, Act,e, L)T'where P is the set of all CCS processes.
We choose the most general modell'since the results described in this section remain valid for
all practical submodels used in verification.

Definition 2. A sequent is an expression of the form ®r||a ¥ }=p ©Twhere ®I'¥ and O are
formulasTand I'TA and A C Act are sets of action symbols.

The meaning of sequents for y-calculus formulas can be expressed as follows:
QIthqysz 0 <=

Vp,q(pIT =@ and ¢TAETY = (prllag)lAE ).
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We apply the following scheme for proving the correctness of composite systems of the form
(pr|la g) TA: assume that we have already proven that pIT' |= ® and ¢lA = ¥ for some
formulas ® and ¥. To prove that (pr|la ¢) 1A | O for a formula © it is sufficient to show that
®r|la ¥ k= O is valid. In other wordsI'we can introduce an inference rule:

pITE® Brla¥H0 glAFY
(prllag)TAF©

This inference rule was inspired by a similar rule of C. Stirling in [14].

In this paper we elaborate on the proof system for sequents of type ®r|a ¥ Fa ©. For details
on the proof system for p - ®I'where p is a sequential CCS termIthe reader is referred to [8].

In our proof system we handle fixed points by assigning tags [16T'1] to the fixed point operators.
Intuitively (although simplified)Itags store the information that some particular sequents have
already occurred below in the proof treel'assuming that the tree grows up from the goal to
axioms. The current sequent is included in the tag of a fixed point formula when this formula
gets unfolded. If the same sequent appears later in the proofT'it is considered proved. This way
of reasoning works for greatest fixed points on the right hand side and for least fixed points on
the left hand side of the ‘I’ sign. In practicel'when unfolding a fixed point formulal'it is not
necessary to include the whole sequent into the tag. It is sufficient to store only the two other
formulas of the sequent. ThusIformallyl'tags are sets of pairs of formulasTassociated with fixed
point operators.

We extend the syntax of formulas by tags L in the fixed point operators as follows:
o uX{L}®I'vX{L}®Twhere L is a finite set of pairs of formulas. L.e.I'L = {(¥y, ¥3),...}.

We will write fixed points with empty tags in the standard p-calculus syntaxTe.g. pX.® instead
of uX{0}®l'and will not distinguish between them.

For technical reasonsI'to simplify the proof of soundnessI'we have developed a special semantics
for sequents with tagged formulasI'so that every rule in the proof system is locally soundl
including the fixed point rules. A standard way to prove the local soundness of the fixed point
rules is to use the reduction Lemma 4 [16I'1] (see the next section). In order to apply this lemma
herel'the semantics of the sequent ®r|ja ¥ FEa vX{L}O must be of the form U C VI'where V
is the (extended) semantic set of »X{L}Ol'and U is some semantic set corresponding to the
pair (@, ¥). To apply the reduction lemma to the least fixed points on the left hand side (e.g.
for uX{L}®r|la¥ Fa ©)'we need to rewrite the semantics of the sequent into an equivalent
form: U’ C V'T'where U’ is now the semantics of the least fixed point formula X {L}®I'and V'
is a semantic set for the pair (¥, ©)['possibly defined differently from the one for (®, ¥) above.

Before introducing the new semantics of sequentsI define the extended semantics of tagged
formulas. Assume given two functions f, and f, that map pairs of formulas into subsets of P
(e.g. fu(®,T) C P). Then the definition of the extended semantic function [[]]g mf)e coincides
with the one of [.] .e from Section 3 on all the operators except the fixed points:




[X{L}0]¢ e = {S' CP| S C [V L]¥*eu [@]¥»e[X := 5}
[pX{L}e]d»"e=n{s' cP| S 2 [ALIMen[8]¥*Me[X := 5}

where
[VII{*Me= U £(8,%) and [AL]f*Me= 0 fu(2,9).
. (8,9)€eL (®,9)eL
In particularl’
[V @]](cfpru)e =0 [A (Z)]]g“’f")e = P.

Noticel'that if all tags in a formula are emptyl'then its extended semantics coincides with the

semantics defined in Section 3.

We need to provide suitable functions that assign semantic sets to pairs of formulasI'as we
discussed above. We call such functions composition and left/right division operations. They
are introduced in Definition 4I'using an additional operation of I'-closure and similar operations
for sets of CCS processes from Definition 3. The I'-closure adds to the set of CCS processes all
the processes that are not of the form (p IT) for this particular I'. Lemma 1 allows to rewrite

the semantics of a sequent in different representations (like U C V and U’ C V' above).

Definition 3. Let AT'B and C be subsets of P. Define

o (A =4 {q|(@p:q=(IT)) = qe A}
o (Ar|laB)TA =4 {(prllag)TA|(pIT) € Aand (¢TA) € B}
o C/ih \B =4 ({(pIT)] forall (¢TA) € B: (prllag)!A € C}F

o C/iANA=y4 ({(¢1A)] forall (pIT) € A: (prllag)tA € CH?

Lemma 1. For A, B,C C P the following holds:

(AraB)IACC <= ACC/fA,B < BCC/RYA

Definition 4. Let I'T'A and A be subsets of Act. Then define
e(®, \Il) =df 0

quotl(@,\p) =g ll’@]l(gypaf)e/i_?’f'z’A[[‘I]]](CC]UOtr,e)e
quotr(®,¥) =4 [[q)]] £,par) /;ngh::A[[\I,]](guotl,e)e

par(®,¥) =g ([2]F**"Ver|la [¥1E"Ie) 1A,




It can be shown that this mutual recursion is well-defined. Notel'that the functions quotlI'quotr
and par also depend on I'TA and ATalthough we do not include these parameters for the sake
of readability. The semantics of the sequent @r||a ¥ =5 © for tagged formulas @'V and © is
defined as follows (with the same ['TA and A in par):

Dpla¥ 2 O < par(®,T) C [O]FPe.

Lemma 2. Assume that all v-subformulas in ® and ¥ and all p-subformulas of © have empty
tags. Then

Opla¥ 2 © <= (Yp,q:(pIT) € (0] )e and (g1A) € [F]E*e

— (prllag) 1A € [0]5PMe)

We will define a sound approximation ® r||a ¥ k5 OTIfor which we can build a proof system. In
this proof system all the proof rules preserve the conditions of Lemma 2. Thereforel'if we start
with formulas with empty tagsT'then all the sequents produced during the proof will satisfy
these conditions.

The Compositional Proof System consists of axioms (fig. 2) and inference rules (fig. 3'4 and
5). We say that a sequent ®r|[a ¥ Fy © is valid if there is a derivation of this sequent in the
proof system.

We will not show all the rules here; we provide only the rules dealing with the leftmost and
the rightmost formulas (labelledl'e.g. by ({[.]1) and (r[.])). The corresponding rules for the
middle formula are symmetrical with those for the left formula (referred to asI'e.g. (1{]2))T
and will be provided in the full version of the paper.

Notel'that we could not have most of the axioms and modal inference rules in such a simple

form as they are if we had used T-actions instead of neutral actions. For T-actionsI'for examplel’
the rule [71] (figure 5) would have to have as many premises as there are synchronizable pairs

of actions in " and ATor the formulas ® and ¥ would have certain restrictions on all the other

actions. This is inconvenient and unnecessaryl'since in our system we can represent the action

7 by the set of all neutral actions a that arise from the synchronous execution of a? and a!. In

additionI'we can also easily prove properties for only those synchronizations we are interested

in.

An Example Proof. We will show here a short example proof for the processes P, Q, R and
their specifications ®T'¥ and © described in Sections 2 and 3.




falser|a¥ Fa© &rjlafalser, o orlla® F, true
pX{L}®p||a¥ FA © Op|lapX{L}T F, © ®rlla ¥ ko vX{L}©
if (9,0 € L if (8/,0") € L if (8, 9") € L
where ®' < ®I'U! < ¥ and ©' < © in the last 3 axioms.

Or|la¥® Fa [oz]G)
where forall v € a: (y € A) or (y PU A and if v = a is neutrall'then {(a?, a!), (a}, a?)}NT x A =)

[a]falsep”A ¥ Fp [a]© (a NA= 0) (where Va € a. {(a?, a!), (a.' a)}NT x A =0)
()&rla® Fr 0 (@NT=0) ara 6)® 1 e(BNA=0)

[e7)falser|a ¥ k4 [a]® drfla [a']false ba [a]©
where (a! ¢ T or a? ¢ A) and a ¢ I' U'A in the last 2 axioms.

Figure 2: Compositional Proof System: Axioms. The (syntactical) relation on formulas ® I ¥
means that the formulas have exactly the same structure except tags (that isI'their untagged
versions are the same)land all tags of ® are subsets of the corresponding tags of .

(lwl) g;‘ ﬁ g:ﬁg (where ® and © have empty tags and = 2 — @)

rfla¥FA®
(rw) Q?“i gl— Q (where © and £ have empty tags and = © — Q)

SrflaThr© Orfa¥FA® QI‘llA‘I"‘A@
(ADgaaiaate (VD) VO LA UFA©

2rlla¥hp0 Orlila¥HA®  2rlla ¥HAQ
(rV) 3o, vFLove (rA) Trlla TFAOAD

Figure 3: Compositional Proof System: Propositional Inference Rules.

(1p1) X/ X{LU{(7.0)}}%]r|la THAO (rv) ®rlla ¥ FAO[X/vX {LU{(2,9)}}6]
H uX{L}8rlla THA© S rlla ¥ FAvX{L}0

O[X/vX{L}%] UH,0 ) UA0[X/uX{L}O
(1) ey (rp) 2ea g PR

Figure 4: Compositional Proof System: Fixed Point Inference Rules. The notation ® [X/ U]
denotes the substitution of ¥ for X in ®.




THA0 a¢TUA and AU
(D pratams han gres (T wmda e e €

] UH,\O ® TFAQ
(1) <a><1>f~“i Traee@ St (D EEravrEeena =9

alfalsend pla ¥ H4[6]0
(lwl]1) [OE f]afs::q)pﬁﬂA\IJ I-Af\a[u]ﬁ]@ (ana=0)

[} 14 UHp,0 [} o]® U0
(1) R T B aTauge - (@na =#nr =0

where Ya € a U 8. {(a?, @!), (a!, a?)} NT x A = in the last 3 rules.

Figure 5: Compositional Proof System: Modal Inference Rules. Formulas in parentheses are
optionall'but if some (®A) occurs in a premisel'then it must occur in the conclusion.

(axiom)
<I)1"”A L2 N (ON
()2
Brlla ()T ta {c)©
(ru, rv)
@rila ()T Fa pY.({c)©1 V(B)Y)
((r2)

B erlla B7) ()T Fa (5) () ©: v (B)Y)
D@ rlla (67 () ¥ Fa ()01 V (B) a¥.((c) O1 V (3} ¥)
®) @ rlla 7)) ¥ Fa 4¥-((c) €1 V (B)Y)

(@) ) S rlla (7)) ¥ Fa (@) u.((0) ©1 V (B)Y)

Sp|la¥ Fp ©

(rv)
(ru
(1))

(rv, i, W2)

Where

01 = vX{(®,9)} (a) pY.({c) X V (b) ¥).

5 Soundness.

Soundness of the proof system described above can be stated as the following theorem:

Theorem 3. (Soundness) Assume that all v-subformulas in ® and ¥ and all p-subformulas of
© have empty tags. Then

(I)p”A\IJ Fa® = QI‘”A\I’ |=A 0.

10




Before sketching the proof we state the following lemma.

Lemma 4. (The reduction lemma [16T'1]). Let D be a set and f : 20 — 2P be monotone with
respect to C. Denote operators of the least and the greatest fized points of f as pz.f(z) and
vz.f(z) respectively. Then

(i) U Cvz.f(z) <= UC f(vz.(UU f(z)))
(ii) U D pz.f(z) <= U2 f(pz.(UN f(z)))

PROOF. (Of Theorem 3. Sketch).

We show soundness of the proof system by showing that all axioms and rules are individually
sound (i.e. axioms are valid and rules preserve validity). For most of the rules the proof is
straightforward but tediousI'using Lemma 2. The soundness of the fixed point rules (lp)T
(Iu2) and (rv) follows directly from Lemmas 1 and 4. Fixed point axioms are valid because
of the monotonicity of composition and division operators (composition is monotone on both
arguments['division is antimonotone on the first argument and monotone on the second)I'and
the following relations:

L g Ll = IIV L]](fmfu)e (__‘_ [[V L']I(f“’f”)e and [[/\ L]](f“’f")e ;_) II/\ L/]](fmfu)e

UCV = pz(UN f(z)) Cpz.(VN f(z)) and vz.(UU f(z)) Cve.(VU f(z))
for a monotone f as in Lemma 4. a

The proof of soundness was completely checked using the theorem prover PVS [13]. All the
inference rules are encoded as theorems and can be used as rewrite rules when a proof is in
progress. The completeness of the system is still an open problem.

6 Implementation in PVS.

The Compositional Proof System is implemented in PVS theorem prover [13]. The main ob-

jectives of this implementation were to check the soundness of the system and to try out some

relatively small proofs in the system. The PVS was chosen as an implementation framework
because it has a built-in model checker. SoI'both steps of the verification of finite-state systemsI’
i.e. model checking the components and deriving the global propertyl’can be done in PVS. We

verified two examples using the system: (1) Alternating Bit Protocol (ABP) [4'6] and (2)

Milner’s Scheduler [12].

The ABP example consists of three parallel processes SendI' Medium and Receivel’ combined
together by two parallel composition operators:

ABP = ((Sendr,||r,, Medium) a ||, Receive) I A

11




-

with appropriate restriction sets. Each individual process including the intermediate
(Send rg |1y, Medium)

has its own specification. The specifications for the ‘atomic’ processesli.e. Send, Medium and
Receivel'were directly model checked using SMV [10]. The specifications of compound processes
(i.e. obtained by parallel composition) were derived from the components in the proof system.

The example of the Milner’s scheduler is more involved and includes induction on the number
of parallel processes. There are only two very simple ‘atomic’ processes: an arbiter p and a
short wire sw. A scheduler with n arbiters is defined as

Sn = (Barallan sw{=,}) A,
and the body B, is recursively defined by:

(P{El}) ) T
(Bir;llais: PAZi+1}) TTin

and output actions so that they would not cause

B:
Bit1

i

The relabelling Z; is used to rename input
any confusion among different copies of p.

The verification was done by induction on the number of arbiters:

e Specifications for p and sw were model checked;

o Assuming proved B, = @, and sw{Z,} | U.l'the sequent @, rolla, ¥n Fa, ©n was
derived with n as a parameter;

e Also assuming p{Z,} E ¢.I'the sequent @ o llnss Gns1 Fropy @nr was proved.

After model checking of By = ®; the verification was complete. ThusI'we showed that for
arbitrary nI'S, = ©, by induction on the number of parallel components.

The hardest part here was to find the right invariant @y, and to prove the sequent

¢n Fn”Qn+1 ¢Tl+1 I__1-‘114.1 Qn—l-l-

The chart below shows the proof size in steps for several sequents:

Max Formula | nesting | altern. | # proof steps | # proof steps
length depth | depth (direct) (simplified)
17 5 2 80 80
15 3 2 23 23
23 3 2 4.65 - 108 814

The column “# proof steps (simplified)” refers to the number of steps without repetitions of
identical subproofs. As it can be easily seenI'the naive proof tree (“direct” column) contains a
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lot of repetitions in the last proof (the induction step for the Milner’s Scheduler). The blowup

was caused by multiple instances of bound variables in fixed point operatorsI'since the unfolding

of fixed points produced several identical copies of subformulas. ThusTit is much more practical

to think about a proof DAG (Directed Acyclic Graph) rather than a proof tree. Unfortunatelyl’
PVS does not allow to detect identical subgoals dynamically. ThereforeI'this proof system needs

to be implemented in a special purpose theorem prover designed specifically for this system.

7 Conclusion.

We have presented a Compositional Proof System for the modal p-calculus and a (more general
version of a) parallel composition operator of CCS. The proof system allows us to decompose
a verification task into simpler tasks for each parallel component. For examplel'in the finite
state casel'if we are to verify that a process term of the form (Pr||la @) I A has a property OT
we can reduce this task to showing that P I'T satisfies ® and @ I A satisfies ¥ for some suitably
chosen ® and ¥ for which we can derive ®p||a ¥ ko © in our proof system. This way of
compositional reasoning significantly reduces the state explosion problem arising in the direct
model checking method [6]. In generallit is much easier to model check two properties of two
components and prove a sequent ®r|ja ¥ 5 OT'than to model check the same property © for
the result of the parallel composition directly. The reason is that in the finite-state case the
parallel composition operator often causes an exponential blow-up of the number of statesI'and
one may easily obtain an intractable size in a very simple example. In contrastT'in our approach
we would have to explore only several relatively small state spacesT'and when formulas are not
too long (which is often the case)I'produce tolerable overhead by deriving the global propertyl’
which results in computationally simpler and faster verification. Similar reasons work in the
infinite-state casel'except that we have to compare a different notion of complexity rather than
the number of states. '

Another significant advantage of the approach is that it supports a compositional design in

the following sense. Supposel' we are to design a complex system consisting of dozens (if

not hundreds or thousands) of parallel components. What we have to do first is to specify

every component in some higher level specification languagel'and then make sure that if every

specification is metI'then the whole design will be correct. Our compositional proof system can

naturally assist in solving this problem even before the actual implementation has started['and

one may save significant amount of effort in case the specifications contain a subtle but crucial
error. Moreover['after the implementation there is no need to verify the entire system. Insteadl’
it is enough to prove the correctness of each of the components separatelyl'which is a much

simpler task.

There are many open problems in the area. To mention only the most important onesI'we do
not know if the proof system is complete in general or for any particular class of CCS processes.
Another open question is the decidability of ®r[la ¥ }=4 ©. A positive answer would make a
compositional model checking problem fully automatic and possibly tractable for virtually any
size and complexity of finite-state systems.
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In future we plan to implement this system more efficiently in a special purpose theorem prover
and provide a better input language for writing specifications of parallel systems and their
properties.
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